Real-Time Video Microscopy of In Vitro Demodex Death by Intense Pulsed Light

Harvey A. Fishman, Laura M. Periman, MD & Ami A. Shah

Demodex Death by Intense Pulsed Light

Abstract

Objective: To directly observe the in vitro real-time effects of intense pulsed light (IPL) on a Demodex mite extracted from an eyelash of a patient with ocular rosacea.

Background: Demodex is a risk factor in the pathogenesis of oculofacial rosacea, meibomian gland dysfunction (MGD), and dry eye disease (DED). Recent studies suggested IPL to control or eradicate Demodex organisms in the periocular area. Despite encouraging reports, the direct effect of IPL on Demodex is not well understood.

Methods: An eyelash infested with Demodex was epilated from a 62-year-old female patient with oculofacial rosacea. Following isolation and adherence of a mite onto a microscope slide, real-time video microscopy was used to capture live images of the organism before, during, and after administration of IPL pulses. IPL pulses were delivered with the M22 IPL (Lumenis), with IPL settings used for treatment of DED due to MGD (the “Toyos protocol”). A noncontact digital laser infrared thermometer was used to measure the temperature of the slide.

Results: Before the IPL pulses, legs of the Demodex mite spontaneously moved in a repetitive and semicircular motion. During administration of IPL, spontaneous movements of the legs continued. Immediately after administration of five IPL pulses, the temperature of the slide increased from room temperature to 49°C. Immediately afterward, the Demodex mite became completely immobilized. The legs appeared retracted, smoother, less corrugated, bulkier, and less well-defined. Movement of the Demodex mite was not observed at the hourly inspections for 5 h and after 24 h following the application of IPL pulses.

Conclusions: Our video directly demonstrates the effect of IPL on a live Demodex mite extracted from a freshly epilated eyelash. The results suggest that IPL application with settings identical to those used for treatment of DED due to MGD causes a complete destruction of the organism.